Gene-expression profiling of CD34+ cells from various hematopoietic stem-cell sources reveals functional differences in stem-cell activity.

نویسندگان

  • Yuk Yin Ng
  • Berris van Kessel
  • Henk M Lokhorst
  • Miranda R M Baert
  • Caroline M M van den Burg
  • Andries C Bloem
  • Frank J T Staal
چکیده

The replacement of bone marrow (BM) as a conventional source of stem cell (SC) by umbilical cord blood (UCB) and granulocyte-colony stimulating factor-mobilized peripheral blood SC (PBSC) has brought about clinical advantages. However, several studies have demonstrated that UCB CD34(+) cells and PBSC significantly differ from BM CD34(+) cells qualitatively and quantitatively. Here, we quantified the number of SC in purified BM, UCB CD34(+) cells, and CD34(+) PBSC using in vitro and in vivo assays for human hematopoietic SC (HSC) activity. A cobblestone area-forming cell (CAFC) assay showed that UCB CD34(+) cells contained the highest frequency of CAFC(wk6) (3.6- to tenfold higher than BM CD34(+) cells and PBSC, respectively), and the engraftment capacity in vivo by nonobese diabetic/severe combined immunodeficiency repopulation assay was also significantly greater than BM CD34(+), with a higher proportion of CD45(+) cells detected in the recipients at a lower cell dose. To understand the molecular characteristics underlying these functional differences, we performed several DNA microarray experiments using Affymetrix gene chips, containing 12,600 genes. Comparative analysis of gene-expression profiles showed differential expression of 51 genes between BM and UCB CD34(+) SC and 64 genes between BM CD34(+) cells and PBSC. These genes are involved in proliferation, differentiation, apoptosis, and engraftment capacity of SC. Thus, the molecular expression profiles reported here confirmed functional differences observed among the SC sources. Moreover, this report provides new insights to describe the molecular phenotype of CD34(+) HSC and leads to a better understanding of the discrepancy among the SC sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adipose Stem Cells as a Feeder Layer Reduce Apoptosis and p53 Gene Expression of Human Expanded Hematopoietic Stem Cells Derived from Cord Blood

Introduction: Human hematopoietic stem cells (hHSCs) have been used for transplantation in hematologic failures. Because the number of hHSCs per cord blood unit is limited, the expansion of these cells is important for clinical application. It has been reported that cytokines and feeder layer provide a perspective to in vitro expansion of hHSCs. In this regard, cord blood CD34+ cells ex...

متن کامل

Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells

Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...

متن کامل

Gene Expression and Promoter Methylation Status of VHL, Runx-3, E-cadherin, P15 and P16 Genes During EPO-Mediated Erythroid Differentiation of CD34+ Hematopoietic Stem Cells

Background: VHL (von Hippel-Lindau), Runx-3 (Runt-related transcription factor 3), E-cadherin (Epithelial cadherin), P15 (INK4a, cyclin dependent kinase inhibitor), and P16 (INK4b) genes are essential in hematopoiesis. The aim of this study was to explore the correlation between gene expression and promoter methylation in CD34+ stem cells before and after differentiation to erythroid lineage. ...

متن کامل

Promoter Methylation and Gene Expression in Human CD34+ Stem Cells Derived Erythroid Lineage by MicroRNA

Background: Stem Cell differentiation is a process composed of vast variety of factors which are controlled by a network of certain mechanisms. This study aims to determine the possible role of DNA methylation, a potent regulator of VHL, ECAD and RUNX3 genes during Erythroid differentiation driven by miR-451. Materials and Methods: To determine the methylation status of promoters and the e...

متن کامل

بررسی وضعیت متیلاسیون در پروموتور ژن‌های vHL، Runx3 و Ecad و بیان این ژن‌ها در سلول‌های CD34+ خون بند ناف

Background and Objective: Specific differentiation processes to various cell lineages are closely associated with factors such as transcription factors, tumor suppressor elements and internal signaling pathways including vHL, Ecad, and Runx3. Epigenetics is an effective control mechanism of these factors, including several mechanisms such as methylation and acetylation. The main objective of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of leukocyte biology

دوره 75 2  شماره 

صفحات  -

تاریخ انتشار 2004